Skip to content

pydantic_ai.models.openai

Setup

For details on how to set up authentication with this model, see model configuration for OpenAI.

OpenAIModelName module-attribute

OpenAIModelName = Union[str, AllModels]

Possible OpenAI model names.

Since OpenAI supports a variety of date-stamped models, we explicitly list the latest models but allow any name in the type hints. See the OpenAI docs for a full list.

Using this more broad type for the model name instead of the ChatModel definition allows this model to be used more easily with other model types (ie, Ollama, Deepseek).

OpenAIModelSettings

Bases: ModelSettings

Settings used for an OpenAI model request.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
class OpenAIModelSettings(ModelSettings, total=False):
    """Settings used for an OpenAI model request."""

    # ALL FIELDS MUST BE `openai_` PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.

    openai_reasoning_effort: ReasoningEffort
    """Constrains effort on reasoning for [reasoning models](https://platform.openai.com/docs/guides/reasoning).

    Currently supported values are `low`, `medium`, and `high`. Reducing reasoning effort can
    result in faster responses and fewer tokens used on reasoning in a response.
    """

    openai_logprobs: bool
    """Include log probabilities in the response."""

    openai_top_logprobs: int
    """Include log probabilities of the top n tokens in the response."""

    openai_user: str
    """A unique identifier representing the end-user, which can help OpenAI monitor and detect abuse.

    See [OpenAI's safety best practices](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids) for more details.
    """

    openai_service_tier: Literal['auto', 'default', 'flex']
    """The service tier to use for the model request.

    Currently supported values are `auto`, `default`, and `flex`.
    For more information, see [OpenAI's service tiers documentation](https://platform.openai.com/docs/api-reference/chat/object#chat/object-service_tier).
    """

    openai_prediction: ChatCompletionPredictionContentParam
    """Enables [predictive outputs](https://platform.openai.com/docs/guides/predicted-outputs).

    This feature is currently only supported for some OpenAI models.
    """

openai_reasoning_effort instance-attribute

openai_reasoning_effort: ReasoningEffort

Constrains effort on reasoning for reasoning models.

Currently supported values are low, medium, and high. Reducing reasoning effort can result in faster responses and fewer tokens used on reasoning in a response.

openai_logprobs instance-attribute

openai_logprobs: bool

Include log probabilities in the response.

openai_top_logprobs instance-attribute

openai_top_logprobs: int

Include log probabilities of the top n tokens in the response.

openai_user instance-attribute

openai_user: str

A unique identifier representing the end-user, which can help OpenAI monitor and detect abuse.

See OpenAI's safety best practices for more details.

openai_service_tier instance-attribute

openai_service_tier: Literal['auto', 'default', 'flex']

The service tier to use for the model request.

Currently supported values are auto, default, and flex. For more information, see OpenAI's service tiers documentation.

openai_prediction instance-attribute

openai_prediction: ChatCompletionPredictionContentParam

Enables predictive outputs.

This feature is currently only supported for some OpenAI models.

OpenAIResponsesModelSettings

Bases: OpenAIModelSettings

Settings used for an OpenAI Responses model request.

ALL FIELDS MUST BE openai_ PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
class OpenAIResponsesModelSettings(OpenAIModelSettings, total=False):
    """Settings used for an OpenAI Responses model request.

    ALL FIELDS MUST BE `openai_` PREFIXED SO YOU CAN MERGE THEM WITH OTHER MODELS.
    """

    openai_builtin_tools: Sequence[FileSearchToolParam | WebSearchToolParam | ComputerToolParam]
    """The provided OpenAI built-in tools to use.

    See [OpenAI's built-in tools](https://platform.openai.com/docs/guides/tools?api-mode=responses) for more details.
    """

    openai_reasoning_generate_summary: Literal['detailed', 'concise']
    """Deprecated alias for `openai_reasoning_summary`."""

    openai_reasoning_summary: Literal['detailed', 'concise']
    """A summary of the reasoning performed by the model.

    This can be useful for debugging and understanding the model's reasoning process.
    One of `concise` or `detailed`.

    Check the [OpenAI Computer use documentation](https://platform.openai.com/docs/guides/tools-computer-use#1-send-a-request-to-the-model)
    for more details.
    """

    openai_truncation: Literal['disabled', 'auto']
    """The truncation strategy to use for the model response.

    It can be either:
    - `disabled` (default): If a model response will exceed the context window size for a model, the
        request will fail with a 400 error.
    - `auto`: If the context of this response and previous ones exceeds the model's context window size,
        the model will truncate the response to fit the context window by dropping input items in the
        middle of the conversation.
    """

openai_builtin_tools instance-attribute

openai_builtin_tools: Sequence[
    FileSearchToolParam
    | WebSearchToolParam
    | ComputerToolParam
]

The provided OpenAI built-in tools to use.

See OpenAI's built-in tools for more details.

openai_reasoning_generate_summary instance-attribute

openai_reasoning_generate_summary: Literal[
    "detailed", "concise"
]

Deprecated alias for openai_reasoning_summary.

openai_reasoning_summary instance-attribute

openai_reasoning_summary: Literal['detailed', 'concise']

A summary of the reasoning performed by the model.

This can be useful for debugging and understanding the model's reasoning process. One of concise or detailed.

Check the OpenAI Computer use documentation for more details.

openai_truncation instance-attribute

openai_truncation: Literal['disabled', 'auto']

The truncation strategy to use for the model response.

It can be either: - disabled (default): If a model response will exceed the context window size for a model, the request will fail with a 400 error. - auto: If the context of this response and previous ones exceeds the model's context window size, the model will truncate the response to fit the context window by dropping input items in the middle of the conversation.

OpenAIModel dataclass

Bases: Model

A model that uses the OpenAI API.

Internally, this uses the OpenAI Python client to interact with the API.

Apart from __init__, all methods are private or match those of the base class.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
@dataclass(init=False)
class OpenAIModel(Model):
    """A model that uses the OpenAI API.

    Internally, this uses the [OpenAI Python client](https://github.com/openai/openai-python) to interact with the API.

    Apart from `__init__`, all methods are private or match those of the base class.
    """

    client: AsyncOpenAI = field(repr=False)
    system_prompt_role: OpenAISystemPromptRole | None = field(default=None, repr=False)

    _model_name: OpenAIModelName = field(repr=False)
    _system: str = field(default='openai', repr=False)

    def __init__(
        self,
        model_name: OpenAIModelName,
        *,
        provider: Literal[
            'openai',
            'deepseek',
            'azure',
            'openrouter',
            'moonshotai',
            'vercel',
            'grok',
            'fireworks',
            'together',
            'heroku',
            'github',
        ]
        | Provider[AsyncOpenAI] = 'openai',
        profile: ModelProfileSpec | None = None,
        system_prompt_role: OpenAISystemPromptRole | None = None,
        settings: ModelSettings | None = None,
    ):
        """Initialize an OpenAI model.

        Args:
            model_name: The name of the OpenAI model to use. List of model names available
                [here](https://github.com/openai/openai-python/blob/v1.54.3/src/openai/types/chat_model.py#L7)
                (Unfortunately, despite being ask to do so, OpenAI do not provide `.inv` files for their API).
            provider: The provider to use. Defaults to `'openai'`.
            profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
            system_prompt_role: The role to use for the system prompt message. If not provided, defaults to `'system'`.
                In the future, this may be inferred from the model name.
            settings: Default model settings for this model instance.
        """
        self._model_name = model_name

        if isinstance(provider, str):
            provider = infer_provider(provider)
        self.client = provider.client

        self.system_prompt_role = system_prompt_role

        super().__init__(settings=settings, profile=profile or provider.model_profile)

    @property
    def base_url(self) -> str:
        return str(self.client.base_url)

    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ModelResponse:
        check_allow_model_requests()
        response = await self._completions_create(
            messages, False, cast(OpenAIModelSettings, model_settings or {}), model_request_parameters
        )
        model_response = self._process_response(response)
        model_response.usage.requests = 1
        return model_response

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        check_allow_model_requests()
        response = await self._completions_create(
            messages, True, cast(OpenAIModelSettings, model_settings or {}), model_request_parameters
        )
        async with response:
            yield await self._process_streamed_response(response)

    @property
    def model_name(self) -> OpenAIModelName:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The system / model provider."""
        return self._system

    @overload
    async def _completions_create(
        self,
        messages: list[ModelMessage],
        stream: Literal[True],
        model_settings: OpenAIModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncStream[ChatCompletionChunk]: ...

    @overload
    async def _completions_create(
        self,
        messages: list[ModelMessage],
        stream: Literal[False],
        model_settings: OpenAIModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> chat.ChatCompletion: ...

    async def _completions_create(
        self,
        messages: list[ModelMessage],
        stream: bool,
        model_settings: OpenAIModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> chat.ChatCompletion | AsyncStream[ChatCompletionChunk]:
        tools = self._get_tools(model_request_parameters)
        if not tools:
            tool_choice: Literal['none', 'required', 'auto'] | None = None
        elif (
            not model_request_parameters.allow_text_output
            and OpenAIModelProfile.from_profile(self.profile).openai_supports_tool_choice_required
        ):
            tool_choice = 'required'
        else:
            tool_choice = 'auto'

        openai_messages = await self._map_messages(messages)

        response_format: chat.completion_create_params.ResponseFormat | None = None
        if model_request_parameters.output_mode == 'native':
            output_object = model_request_parameters.output_object
            assert output_object is not None
            response_format = self._map_json_schema(output_object)
        elif (
            model_request_parameters.output_mode == 'prompted' and self.profile.supports_json_object_output
        ):  # pragma: no branch
            response_format = {'type': 'json_object'}

        sampling_settings = (
            model_settings
            if OpenAIModelProfile.from_profile(self.profile).openai_supports_sampling_settings
            else OpenAIModelSettings()
        )

        try:
            extra_headers = model_settings.get('extra_headers', {})
            extra_headers.setdefault('User-Agent', get_user_agent())
            return await self.client.chat.completions.create(
                model=self._model_name,
                messages=openai_messages,
                parallel_tool_calls=model_settings.get('parallel_tool_calls', NOT_GIVEN),
                tools=tools or NOT_GIVEN,
                tool_choice=tool_choice or NOT_GIVEN,
                stream=stream,
                stream_options={'include_usage': True} if stream else NOT_GIVEN,
                stop=model_settings.get('stop_sequences', NOT_GIVEN),
                max_completion_tokens=model_settings.get('max_tokens', NOT_GIVEN),
                timeout=model_settings.get('timeout', NOT_GIVEN),
                response_format=response_format or NOT_GIVEN,
                seed=model_settings.get('seed', NOT_GIVEN),
                reasoning_effort=model_settings.get('openai_reasoning_effort', NOT_GIVEN),
                user=model_settings.get('openai_user', NOT_GIVEN),
                service_tier=model_settings.get('openai_service_tier', NOT_GIVEN),
                prediction=model_settings.get('openai_prediction', NOT_GIVEN),
                temperature=sampling_settings.get('temperature', NOT_GIVEN),
                top_p=sampling_settings.get('top_p', NOT_GIVEN),
                presence_penalty=sampling_settings.get('presence_penalty', NOT_GIVEN),
                frequency_penalty=sampling_settings.get('frequency_penalty', NOT_GIVEN),
                logit_bias=sampling_settings.get('logit_bias', NOT_GIVEN),
                logprobs=sampling_settings.get('openai_logprobs', NOT_GIVEN),
                top_logprobs=sampling_settings.get('openai_top_logprobs', NOT_GIVEN),
                extra_headers=extra_headers,
                extra_body=model_settings.get('extra_body'),
            )
        except APIStatusError as e:
            if (status_code := e.status_code) >= 400:
                raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.body) from e
            raise  # pragma: no cover

    def _process_response(self, response: chat.ChatCompletion | str) -> ModelResponse:
        """Process a non-streamed response, and prepare a message to return."""
        # Although the OpenAI SDK claims to return a Pydantic model (`ChatCompletion`) from the chat completions function:
        # * it hasn't actually performed validation (presumably they're creating the model with `model_construct` or something?!)
        # * if the endpoint returns plain text, the return type is a string
        # Thus we validate it fully here.
        if not isinstance(response, chat.ChatCompletion):
            raise UnexpectedModelBehavior('Invalid response from OpenAI chat completions endpoint, expected JSON data')

        if response.created:
            timestamp = number_to_datetime(response.created)
        else:
            timestamp = _now_utc()
            response.created = int(timestamp.timestamp())

        try:
            response = chat.ChatCompletion.model_validate(response.model_dump())
        except ValidationError as e:
            raise UnexpectedModelBehavior(f'Invalid response from OpenAI chat completions endpoint: {e}') from e

        choice = response.choices[0]
        items: list[ModelResponsePart] = []
        # The `reasoning_content` is only present in DeepSeek models.
        if reasoning_content := getattr(choice.message, 'reasoning_content', None):
            items.append(ThinkingPart(content=reasoning_content))

        vendor_details: dict[str, Any] | None = None

        # Add logprobs to vendor_details if available
        if choice.logprobs is not None and choice.logprobs.content:
            # Convert logprobs to a serializable format
            vendor_details = {
                'logprobs': [
                    {
                        'token': lp.token,
                        'bytes': lp.bytes,
                        'logprob': lp.logprob,
                        'top_logprobs': [
                            {'token': tlp.token, 'bytes': tlp.bytes, 'logprob': tlp.logprob} for tlp in lp.top_logprobs
                        ],
                    }
                    for lp in choice.logprobs.content
                ],
            }

        if choice.message.content is not None:
            items.extend(split_content_into_text_and_thinking(choice.message.content))
        if choice.message.tool_calls is not None:
            for c in choice.message.tool_calls:
                part = ToolCallPart(c.function.name, c.function.arguments, tool_call_id=c.id)
                part.tool_call_id = _guard_tool_call_id(part)
                items.append(part)
        return ModelResponse(
            items,
            usage=_map_usage(response),
            model_name=response.model,
            timestamp=timestamp,
            vendor_details=vendor_details,
            vendor_id=response.id,
        )

    async def _process_streamed_response(self, response: AsyncStream[ChatCompletionChunk]) -> OpenAIStreamedResponse:
        """Process a streamed response, and prepare a streaming response to return."""
        peekable_response = _utils.PeekableAsyncStream(response)
        first_chunk = await peekable_response.peek()
        if isinstance(first_chunk, _utils.Unset):
            raise UnexpectedModelBehavior(  # pragma: no cover
                'Streamed response ended without content or tool calls'
            )

        return OpenAIStreamedResponse(
            _model_name=self._model_name,
            _response=peekable_response,
            _timestamp=number_to_datetime(first_chunk.created),
        )

    def _get_tools(self, model_request_parameters: ModelRequestParameters) -> list[chat.ChatCompletionToolParam]:
        tools = [self._map_tool_definition(r) for r in model_request_parameters.function_tools]
        if model_request_parameters.output_tools:
            tools += [self._map_tool_definition(r) for r in model_request_parameters.output_tools]
        return tools

    async def _map_messages(self, messages: list[ModelMessage]) -> list[chat.ChatCompletionMessageParam]:
        """Just maps a `pydantic_ai.Message` to a `openai.types.ChatCompletionMessageParam`."""
        openai_messages: list[chat.ChatCompletionMessageParam] = []
        for message in messages:
            if isinstance(message, ModelRequest):
                async for item in self._map_user_message(message):
                    openai_messages.append(item)
            elif isinstance(message, ModelResponse):
                texts: list[str] = []
                tool_calls: list[chat.ChatCompletionMessageToolCallParam] = []
                for item in message.parts:
                    if isinstance(item, TextPart):
                        texts.append(item.content)
                    elif isinstance(item, ThinkingPart):
                        # NOTE: We don't send ThinkingPart to the providers yet. If you are unsatisfied with this,
                        # please open an issue. The below code is the code to send thinking to the provider.
                        # texts.append(f'<think>\n{item.content}\n</think>')
                        pass
                    elif isinstance(item, ToolCallPart):
                        tool_calls.append(self._map_tool_call(item))
                    else:
                        assert_never(item)
                message_param = chat.ChatCompletionAssistantMessageParam(role='assistant')
                if texts:
                    # Note: model responses from this model should only have one text item, so the following
                    # shouldn't merge multiple texts into one unless you switch models between runs:
                    message_param['content'] = '\n\n'.join(texts)
                if tool_calls:
                    message_param['tool_calls'] = tool_calls
                openai_messages.append(message_param)
            else:
                assert_never(message)
        if instructions := self._get_instructions(messages):
            openai_messages.insert(0, chat.ChatCompletionSystemMessageParam(content=instructions, role='system'))
        return openai_messages

    @staticmethod
    def _map_tool_call(t: ToolCallPart) -> chat.ChatCompletionMessageToolCallParam:
        return chat.ChatCompletionMessageToolCallParam(
            id=_guard_tool_call_id(t=t),
            type='function',
            function={'name': t.tool_name, 'arguments': t.args_as_json_str()},
        )

    def _map_json_schema(self, o: OutputObjectDefinition) -> chat.completion_create_params.ResponseFormat:
        response_format_param: chat.completion_create_params.ResponseFormatJSONSchema = {  # pyright: ignore[reportPrivateImportUsage]
            'type': 'json_schema',
            'json_schema': {'name': o.name or DEFAULT_OUTPUT_TOOL_NAME, 'schema': o.json_schema, 'strict': True},
        }
        if o.description:
            response_format_param['json_schema']['description'] = o.description
        if OpenAIModelProfile.from_profile(self.profile).openai_supports_strict_tool_definition:  # pragma: no branch
            response_format_param['json_schema']['strict'] = o.strict
        return response_format_param

    def _map_tool_definition(self, f: ToolDefinition) -> chat.ChatCompletionToolParam:
        tool_param: chat.ChatCompletionToolParam = {
            'type': 'function',
            'function': {
                'name': f.name,
                'description': f.description or '',
                'parameters': f.parameters_json_schema,
            },
        }
        if f.strict and OpenAIModelProfile.from_profile(self.profile).openai_supports_strict_tool_definition:
            tool_param['function']['strict'] = f.strict
        return tool_param

    async def _map_user_message(self, message: ModelRequest) -> AsyncIterable[chat.ChatCompletionMessageParam]:
        for part in message.parts:
            if isinstance(part, SystemPromptPart):
                if self.system_prompt_role == 'developer':
                    yield chat.ChatCompletionDeveloperMessageParam(role='developer', content=part.content)
                elif self.system_prompt_role == 'user':
                    yield chat.ChatCompletionUserMessageParam(role='user', content=part.content)
                else:
                    yield chat.ChatCompletionSystemMessageParam(role='system', content=part.content)
            elif isinstance(part, UserPromptPart):
                yield await self._map_user_prompt(part)
            elif isinstance(part, ToolReturnPart):
                yield chat.ChatCompletionToolMessageParam(
                    role='tool',
                    tool_call_id=_guard_tool_call_id(t=part),
                    content=part.model_response_str(),
                )
            elif isinstance(part, RetryPromptPart):
                if part.tool_name is None:
                    yield chat.ChatCompletionUserMessageParam(  # pragma: no cover
                        role='user', content=part.model_response()
                    )
                else:
                    yield chat.ChatCompletionToolMessageParam(
                        role='tool',
                        tool_call_id=_guard_tool_call_id(t=part),
                        content=part.model_response(),
                    )
            else:
                assert_never(part)

    @staticmethod
    async def _map_user_prompt(part: UserPromptPart) -> chat.ChatCompletionUserMessageParam:
        content: str | list[ChatCompletionContentPartParam]
        if isinstance(part.content, str):
            content = part.content
        else:
            content = []
            for item in part.content:
                if isinstance(item, str):
                    content.append(ChatCompletionContentPartTextParam(text=item, type='text'))
                elif isinstance(item, ImageUrl):
                    image_url = ImageURL(url=item.url)
                    content.append(ChatCompletionContentPartImageParam(image_url=image_url, type='image_url'))
                elif isinstance(item, BinaryContent):
                    base64_encoded = base64.b64encode(item.data).decode('utf-8')
                    if item.is_image:
                        image_url = ImageURL(url=f'data:{item.media_type};base64,{base64_encoded}')
                        content.append(ChatCompletionContentPartImageParam(image_url=image_url, type='image_url'))
                    elif item.is_audio:
                        assert item.format in ('wav', 'mp3')
                        audio = InputAudio(data=base64_encoded, format=item.format)
                        content.append(ChatCompletionContentPartInputAudioParam(input_audio=audio, type='input_audio'))
                    elif item.is_document:
                        content.append(
                            File(
                                file=FileFile(
                                    file_data=f'data:{item.media_type};base64,{base64_encoded}',
                                    filename=f'filename.{item.format}',
                                ),
                                type='file',
                            )
                        )
                    else:  # pragma: no cover
                        raise RuntimeError(f'Unsupported binary content type: {item.media_type}')
                elif isinstance(item, AudioUrl):
                    downloaded_item = await download_item(item, data_format='base64', type_format='extension')
                    assert downloaded_item['data_type'] in (
                        'wav',
                        'mp3',
                    ), f'Unsupported audio format: {downloaded_item["data_type"]}'
                    audio = InputAudio(data=downloaded_item['data'], format=downloaded_item['data_type'])
                    content.append(ChatCompletionContentPartInputAudioParam(input_audio=audio, type='input_audio'))
                elif isinstance(item, DocumentUrl):
                    downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension')
                    file = File(
                        file=FileFile(
                            file_data=downloaded_item['data'], filename=f'filename.{downloaded_item["data_type"]}'
                        ),
                        type='file',
                    )
                    content.append(file)
                elif isinstance(item, VideoUrl):  # pragma: no cover
                    raise NotImplementedError('VideoUrl is not supported for OpenAI')
                else:
                    assert_never(item)
        return chat.ChatCompletionUserMessageParam(role='user', content=content)

__init__

__init__(
    model_name: OpenAIModelName,
    *,
    provider: (
        Literal[
            "openai",
            "deepseek",
            "azure",
            "openrouter",
            "moonshotai",
            "vercel",
            "grok",
            "fireworks",
            "together",
            "heroku",
            "github",
        ]
        | Provider[AsyncOpenAI]
    ) = "openai",
    profile: ModelProfileSpec | None = None,
    system_prompt_role: (
        OpenAISystemPromptRole | None
    ) = None,
    settings: ModelSettings | None = None
)

Initialize an OpenAI model.

Parameters:

Name Type Description Default
model_name OpenAIModelName

The name of the OpenAI model to use. List of model names available here (Unfortunately, despite being ask to do so, OpenAI do not provide .inv files for their API).

required
provider Literal['openai', 'deepseek', 'azure', 'openrouter', 'moonshotai', 'vercel', 'grok', 'fireworks', 'together', 'heroku', 'github'] | Provider[AsyncOpenAI]

The provider to use. Defaults to 'openai'.

'openai'
profile ModelProfileSpec | None

The model profile to use. Defaults to a profile picked by the provider based on the model name.

None
system_prompt_role OpenAISystemPromptRole | None

The role to use for the system prompt message. If not provided, defaults to 'system'. In the future, this may be inferred from the model name.

None
settings ModelSettings | None

Default model settings for this model instance.

None
Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def __init__(
    self,
    model_name: OpenAIModelName,
    *,
    provider: Literal[
        'openai',
        'deepseek',
        'azure',
        'openrouter',
        'moonshotai',
        'vercel',
        'grok',
        'fireworks',
        'together',
        'heroku',
        'github',
    ]
    | Provider[AsyncOpenAI] = 'openai',
    profile: ModelProfileSpec | None = None,
    system_prompt_role: OpenAISystemPromptRole | None = None,
    settings: ModelSettings | None = None,
):
    """Initialize an OpenAI model.

    Args:
        model_name: The name of the OpenAI model to use. List of model names available
            [here](https://github.com/openai/openai-python/blob/v1.54.3/src/openai/types/chat_model.py#L7)
            (Unfortunately, despite being ask to do so, OpenAI do not provide `.inv` files for their API).
        provider: The provider to use. Defaults to `'openai'`.
        profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
        system_prompt_role: The role to use for the system prompt message. If not provided, defaults to `'system'`.
            In the future, this may be inferred from the model name.
        settings: Default model settings for this model instance.
    """
    self._model_name = model_name

    if isinstance(provider, str):
        provider = infer_provider(provider)
    self.client = provider.client

    self.system_prompt_role = system_prompt_role

    super().__init__(settings=settings, profile=profile or provider.model_profile)

model_name property

model_name: OpenAIModelName

The model name.

system property

system: str

The system / model provider.

OpenAIResponsesModel dataclass

Bases: Model

A model that uses the OpenAI Responses API.

The OpenAI Responses API is the new API for OpenAI models.

The Responses API has built-in tools, that you can use instead of building your own:

Use the openai_builtin_tools setting to add these tools to your model.

If you are interested in the differences between the Responses API and the Chat Completions API, see the OpenAI API docs.

Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
@dataclass(init=False)
class OpenAIResponsesModel(Model):
    """A model that uses the OpenAI Responses API.

    The [OpenAI Responses API](https://platform.openai.com/docs/api-reference/responses) is the
    new API for OpenAI models.

    The Responses API has built-in tools, that you can use instead of building your own:

    - [Web search](https://platform.openai.com/docs/guides/tools-web-search)
    - [File search](https://platform.openai.com/docs/guides/tools-file-search)
    - [Computer use](https://platform.openai.com/docs/guides/tools-computer-use)

    Use the `openai_builtin_tools` setting to add these tools to your model.

    If you are interested in the differences between the Responses API and the Chat Completions API,
    see the [OpenAI API docs](https://platform.openai.com/docs/guides/responses-vs-chat-completions).
    """

    client: AsyncOpenAI = field(repr=False)
    system_prompt_role: OpenAISystemPromptRole | None = field(default=None)

    _model_name: OpenAIModelName = field(repr=False)
    _system: str = field(default='openai', repr=False)

    def __init__(
        self,
        model_name: OpenAIModelName,
        *,
        provider: Literal['openai', 'deepseek', 'azure', 'openrouter', 'grok', 'fireworks', 'together']
        | Provider[AsyncOpenAI] = 'openai',
        profile: ModelProfileSpec | None = None,
        settings: ModelSettings | None = None,
    ):
        """Initialize an OpenAI Responses model.

        Args:
            model_name: The name of the OpenAI model to use.
            provider: The provider to use. Defaults to `'openai'`.
            profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
            settings: Default model settings for this model instance.
        """
        self._model_name = model_name

        if isinstance(provider, str):
            provider = infer_provider(provider)
        self.client = provider.client

        super().__init__(settings=settings, profile=profile or provider.model_profile)

    @property
    def model_name(self) -> OpenAIModelName:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The system / model provider."""
        return self._system

    async def request(
        self,
        messages: list[ModelRequest | ModelResponse],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ModelResponse:
        check_allow_model_requests()
        response = await self._responses_create(
            messages, False, cast(OpenAIResponsesModelSettings, model_settings or {}), model_request_parameters
        )
        return self._process_response(response)

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        check_allow_model_requests()
        response = await self._responses_create(
            messages, True, cast(OpenAIResponsesModelSettings, model_settings or {}), model_request_parameters
        )
        async with response:
            yield await self._process_streamed_response(response)

    def _process_response(self, response: responses.Response) -> ModelResponse:
        """Process a non-streamed response, and prepare a message to return."""
        timestamp = number_to_datetime(response.created_at)
        items: list[ModelResponsePart] = []
        for item in response.output:
            if item.type == 'reasoning':
                for summary in item.summary:
                    # NOTE: We use the same id for all summaries because we can merge them on the round trip.
                    # The providers don't force the signature to be unique.
                    items.append(ThinkingPart(content=summary.text, id=item.id))
            elif item.type == 'message':
                for content in item.content:
                    if content.type == 'output_text':  # pragma: no branch
                        items.append(TextPart(content.text))
            elif item.type == 'function_call':
                items.append(ToolCallPart(item.name, item.arguments, tool_call_id=item.call_id))
        return ModelResponse(
            items,
            usage=_map_usage(response),
            model_name=response.model,
            vendor_id=response.id,
            timestamp=timestamp,
        )

    async def _process_streamed_response(
        self, response: AsyncStream[responses.ResponseStreamEvent]
    ) -> OpenAIResponsesStreamedResponse:
        """Process a streamed response, and prepare a streaming response to return."""
        peekable_response = _utils.PeekableAsyncStream(response)
        first_chunk = await peekable_response.peek()
        if isinstance(first_chunk, _utils.Unset):  # pragma: no cover
            raise UnexpectedModelBehavior('Streamed response ended without content or tool calls')

        assert isinstance(first_chunk, responses.ResponseCreatedEvent)
        return OpenAIResponsesStreamedResponse(
            _model_name=self._model_name,
            _response=peekable_response,
            _timestamp=number_to_datetime(first_chunk.response.created_at),
        )

    @overload
    async def _responses_create(
        self,
        messages: list[ModelRequest | ModelResponse],
        stream: Literal[False],
        model_settings: OpenAIResponsesModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> responses.Response: ...

    @overload
    async def _responses_create(
        self,
        messages: list[ModelRequest | ModelResponse],
        stream: Literal[True],
        model_settings: OpenAIResponsesModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncStream[responses.ResponseStreamEvent]: ...

    async def _responses_create(
        self,
        messages: list[ModelRequest | ModelResponse],
        stream: bool,
        model_settings: OpenAIResponsesModelSettings,
        model_request_parameters: ModelRequestParameters,
    ) -> responses.Response | AsyncStream[responses.ResponseStreamEvent]:
        tools = self._get_tools(model_request_parameters)
        tools = list(model_settings.get('openai_builtin_tools', [])) + tools

        if not tools:
            tool_choice: Literal['none', 'required', 'auto'] | None = None
        elif not model_request_parameters.allow_text_output:
            tool_choice = 'required'
        else:
            tool_choice = 'auto'

        instructions, openai_messages = await self._map_messages(messages)
        reasoning = self._get_reasoning(model_settings)

        text: responses.ResponseTextConfigParam | None = None
        if model_request_parameters.output_mode == 'native':
            output_object = model_request_parameters.output_object
            assert output_object is not None
            text = {'format': self._map_json_schema(output_object)}
        elif (
            model_request_parameters.output_mode == 'prompted' and self.profile.supports_json_object_output
        ):  # pragma: no branch
            text = {'format': {'type': 'json_object'}}

            # Without this trick, we'd hit this error:
            # > Response input messages must contain the word 'json' in some form to use 'text.format' of type 'json_object'.
            # Apparently they're only checking input messages for "JSON", not instructions.
            assert isinstance(instructions, str)
            openai_messages.insert(0, responses.EasyInputMessageParam(role='system', content=instructions))
            instructions = NOT_GIVEN

        sampling_settings = (
            model_settings
            if OpenAIModelProfile.from_profile(self.profile).openai_supports_sampling_settings
            else OpenAIResponsesModelSettings()
        )

        try:
            extra_headers = model_settings.get('extra_headers', {})
            extra_headers.setdefault('User-Agent', get_user_agent())
            return await self.client.responses.create(
                input=openai_messages,
                model=self._model_name,
                instructions=instructions,
                parallel_tool_calls=model_settings.get('parallel_tool_calls', NOT_GIVEN),
                tools=tools or NOT_GIVEN,
                tool_choice=tool_choice or NOT_GIVEN,
                max_output_tokens=model_settings.get('max_tokens', NOT_GIVEN),
                stream=stream,
                temperature=sampling_settings.get('temperature', NOT_GIVEN),
                top_p=sampling_settings.get('top_p', NOT_GIVEN),
                truncation=model_settings.get('openai_truncation', NOT_GIVEN),
                timeout=model_settings.get('timeout', NOT_GIVEN),
                reasoning=reasoning,
                user=model_settings.get('openai_user', NOT_GIVEN),
                text=text or NOT_GIVEN,
                extra_headers=extra_headers,
                extra_body=model_settings.get('extra_body'),
            )
        except APIStatusError as e:
            if (status_code := e.status_code) >= 400:
                raise ModelHTTPError(status_code=status_code, model_name=self.model_name, body=e.body) from e
            raise  # pragma: no cover

    def _get_reasoning(self, model_settings: OpenAIResponsesModelSettings) -> Reasoning | NotGiven:
        reasoning_effort = model_settings.get('openai_reasoning_effort', None)
        reasoning_summary = model_settings.get('openai_reasoning_summary', None)
        reasoning_generate_summary = model_settings.get('openai_reasoning_generate_summary', None)

        if reasoning_summary and reasoning_generate_summary:  # pragma: no cover
            raise ValueError('`openai_reasoning_summary` and `openai_reasoning_generate_summary` cannot both be set.')

        if reasoning_generate_summary is not None:  # pragma: no cover
            warnings.warn(
                '`openai_reasoning_generate_summary` is deprecated, use `openai_reasoning_summary` instead',
                DeprecationWarning,
            )
            reasoning_summary = reasoning_generate_summary

        if reasoning_effort is None and reasoning_summary is None:
            return NOT_GIVEN
        return Reasoning(effort=reasoning_effort, summary=reasoning_summary)

    def _get_tools(self, model_request_parameters: ModelRequestParameters) -> list[responses.FunctionToolParam]:
        tools = [self._map_tool_definition(r) for r in model_request_parameters.function_tools]
        if model_request_parameters.output_tools:
            tools += [self._map_tool_definition(r) for r in model_request_parameters.output_tools]
        return tools

    def _map_tool_definition(self, f: ToolDefinition) -> responses.FunctionToolParam:
        return {
            'name': f.name,
            'parameters': f.parameters_json_schema,
            'type': 'function',
            'description': f.description,
            'strict': bool(
                f.strict and OpenAIModelProfile.from_profile(self.profile).openai_supports_strict_tool_definition
            ),
        }

    async def _map_messages(
        self, messages: list[ModelMessage]
    ) -> tuple[str | NotGiven, list[responses.ResponseInputItemParam]]:
        """Just maps a `pydantic_ai.Message` to a `openai.types.responses.ResponseInputParam`."""
        openai_messages: list[responses.ResponseInputItemParam] = []
        for message in messages:
            if isinstance(message, ModelRequest):
                for part in message.parts:
                    if isinstance(part, SystemPromptPart):
                        openai_messages.append(responses.EasyInputMessageParam(role='system', content=part.content))
                    elif isinstance(part, UserPromptPart):
                        openai_messages.append(await self._map_user_prompt(part))
                    elif isinstance(part, ToolReturnPart):
                        openai_messages.append(
                            FunctionCallOutput(
                                type='function_call_output',
                                call_id=_guard_tool_call_id(t=part),
                                output=part.model_response_str(),
                            )
                        )
                    elif isinstance(part, RetryPromptPart):
                        # TODO(Marcelo): How do we test this conditional branch?
                        if part.tool_name is None:  # pragma: no cover
                            openai_messages.append(
                                Message(role='user', content=[{'type': 'input_text', 'text': part.model_response()}])
                            )
                        else:
                            openai_messages.append(
                                FunctionCallOutput(
                                    type='function_call_output',
                                    call_id=_guard_tool_call_id(t=part),
                                    output=part.model_response(),
                                )
                            )
                    else:
                        assert_never(part)
            elif isinstance(message, ModelResponse):
                # last_thinking_part_idx: int | None = None
                for item in message.parts:
                    if isinstance(item, TextPart):
                        openai_messages.append(responses.EasyInputMessageParam(role='assistant', content=item.content))
                    elif isinstance(item, ToolCallPart):
                        openai_messages.append(self._map_tool_call(item))
                    elif isinstance(item, ThinkingPart):
                        # NOTE: We don't send ThinkingPart to the providers yet. If you are unsatisfied with this,
                        # please open an issue. The below code is the code to send thinking to the provider.
                        # if last_thinking_part_idx is not None:
                        #     reasoning_item = cast(responses.ResponseReasoningItemParam, openai_messages[last_thinking_part_idx])  # fmt: skip
                        #     if item.id == reasoning_item['id']:
                        #         assert isinstance(reasoning_item['summary'], list)
                        #         reasoning_item['summary'].append(Summary(text=item.content, type='summary_text'))
                        #         continue
                        # last_thinking_part_idx = len(openai_messages)
                        # openai_messages.append(
                        #     responses.ResponseReasoningItemParam(
                        #         id=item.id or generate_tool_call_id(),
                        #         summary=[Summary(text=item.content, type='summary_text')],
                        #         type='reasoning',
                        #     )
                        # )
                        pass
                    else:
                        assert_never(item)
            else:
                assert_never(message)
        instructions = self._get_instructions(messages) or NOT_GIVEN
        return instructions, openai_messages

    @staticmethod
    def _map_tool_call(t: ToolCallPart) -> responses.ResponseFunctionToolCallParam:
        return responses.ResponseFunctionToolCallParam(
            arguments=t.args_as_json_str(),
            call_id=_guard_tool_call_id(t=t),
            name=t.tool_name,
            type='function_call',
        )

    def _map_json_schema(self, o: OutputObjectDefinition) -> responses.ResponseFormatTextJSONSchemaConfigParam:
        response_format_param: responses.ResponseFormatTextJSONSchemaConfigParam = {
            'type': 'json_schema',
            'name': o.name or DEFAULT_OUTPUT_TOOL_NAME,
            'schema': o.json_schema,
        }
        if o.description:
            response_format_param['description'] = o.description
        if OpenAIModelProfile.from_profile(self.profile).openai_supports_strict_tool_definition:  # pragma: no branch
            response_format_param['strict'] = o.strict
        return response_format_param

    @staticmethod
    async def _map_user_prompt(part: UserPromptPart) -> responses.EasyInputMessageParam:
        content: str | list[responses.ResponseInputContentParam]
        if isinstance(part.content, str):
            content = part.content
        else:
            content = []
            for item in part.content:
                if isinstance(item, str):
                    content.append(responses.ResponseInputTextParam(text=item, type='input_text'))
                elif isinstance(item, BinaryContent):
                    base64_encoded = base64.b64encode(item.data).decode('utf-8')
                    if item.is_image:
                        content.append(
                            responses.ResponseInputImageParam(
                                image_url=f'data:{item.media_type};base64,{base64_encoded}',
                                type='input_image',
                                detail='auto',
                            )
                        )
                    elif item.is_document:
                        content.append(
                            responses.ResponseInputFileParam(
                                type='input_file',
                                file_data=f'data:{item.media_type};base64,{base64_encoded}',
                                # NOTE: Type wise it's not necessary to include the filename, but it's required by the
                                # API itself. If we add empty string, the server sends a 500 error - which OpenAI needs
                                # to fix. In any case, we add a placeholder name.
                                filename=f'filename.{item.format}',
                            )
                        )
                    elif item.is_audio:
                        raise NotImplementedError('Audio as binary content is not supported for OpenAI Responses API.')
                    else:  # pragma: no cover
                        raise RuntimeError(f'Unsupported binary content type: {item.media_type}')
                elif isinstance(item, ImageUrl):
                    content.append(
                        responses.ResponseInputImageParam(image_url=item.url, type='input_image', detail='auto')
                    )
                elif isinstance(item, AudioUrl):  # pragma: no cover
                    downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension')
                    content.append(
                        responses.ResponseInputFileParam(
                            type='input_file',
                            file_data=downloaded_item['data'],
                            filename=f'filename.{downloaded_item["data_type"]}',
                        )
                    )
                elif isinstance(item, DocumentUrl):
                    downloaded_item = await download_item(item, data_format='base64_uri', type_format='extension')
                    content.append(
                        responses.ResponseInputFileParam(
                            type='input_file',
                            file_data=downloaded_item['data'],
                            filename=f'filename.{downloaded_item["data_type"]}',
                        )
                    )
                elif isinstance(item, VideoUrl):  # pragma: no cover
                    raise NotImplementedError('VideoUrl is not supported for OpenAI.')
                else:
                    assert_never(item)
        return responses.EasyInputMessageParam(role='user', content=content)

__init__

__init__(
    model_name: OpenAIModelName,
    *,
    provider: (
        Literal[
            "openai",
            "deepseek",
            "azure",
            "openrouter",
            "grok",
            "fireworks",
            "together",
        ]
        | Provider[AsyncOpenAI]
    ) = "openai",
    profile: ModelProfileSpec | None = None,
    settings: ModelSettings | None = None
)

Initialize an OpenAI Responses model.

Parameters:

Name Type Description Default
model_name OpenAIModelName

The name of the OpenAI model to use.

required
provider Literal['openai', 'deepseek', 'azure', 'openrouter', 'grok', 'fireworks', 'together'] | Provider[AsyncOpenAI]

The provider to use. Defaults to 'openai'.

'openai'
profile ModelProfileSpec | None

The model profile to use. Defaults to a profile picked by the provider based on the model name.

None
settings ModelSettings | None

Default model settings for this model instance.

None
Source code in pydantic_ai_slim/pydantic_ai/models/openai.py
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
def __init__(
    self,
    model_name: OpenAIModelName,
    *,
    provider: Literal['openai', 'deepseek', 'azure', 'openrouter', 'grok', 'fireworks', 'together']
    | Provider[AsyncOpenAI] = 'openai',
    profile: ModelProfileSpec | None = None,
    settings: ModelSettings | None = None,
):
    """Initialize an OpenAI Responses model.

    Args:
        model_name: The name of the OpenAI model to use.
        provider: The provider to use. Defaults to `'openai'`.
        profile: The model profile to use. Defaults to a profile picked by the provider based on the model name.
        settings: Default model settings for this model instance.
    """
    self._model_name = model_name

    if isinstance(provider, str):
        provider = infer_provider(provider)
    self.client = provider.client

    super().__init__(settings=settings, profile=profile or provider.model_profile)

model_name property

model_name: OpenAIModelName

The model name.

system property

system: str

The system / model provider.